
Teknologi Cloud Native
Dibalik Layar Penanganan Pandemi

Talk #9 IOID2021

Yoga Hanggara
Head of Engineering at Jabar Digital Service

Bandung, August 21, 2021

About Me
Yoga Hanggara
Jabar Digital Service

@yohang
https://www.linkedin.com/in/yoga-hanggara/

yohang88@gmail.com

Agenda
● Introduction
● Challenges
● What is Cloud Native
● Our Journey
● Measure Success

Introduction
Jabar Digital Service

About West Java

18 Regencies 9 Cities

627 districts

5.312 villages

3.7m ha
One of the biggest
provinces in Indonesia

49+ Mil
20% of the entire
Indonesian population

645 sub-districts

Towards a Digital Province

Our Mission

Top quality technology for world class public services.

Our Mission

Challenges

Challenges: Digital Public Services

Programmer & Operation’s Problem

Programmer & Operation’s Problem

IT Infrastructure Challenges

● Difficult to plan capacity .
● Inefficiencies in IT expenditure (initial setup cost).
● Operational and maintenance costs.
● Limited human resources (infrastructure operations).
● Information security risks.

Development Challenges

● Pandemic, unprepared digital health system.
● Rapid apps digital-tools development.
● Work from home, remote working on government

Not only develop apps, but build reliable services

What is Cloud-Native?
Is It Hype or The Future of Software Development?

Cloud Computing

Container Deployment Era

Cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as public, private,
and hybrid clouds.

Containers, service meshes, microservices, immutable infrastructure, and
declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation, they allow
engineers to make high-impact changes frequently and predictably with
minimal toil. Source: CNCF

What is Cloud-Native?

https://github.com/cncf/toc/blob/main/DEFINITION.md

“Cloud native is an approach to building and running applications that
fully exploit the advantages of the cloud computing model.”

Source: Pivotal

What is Cloud-Native?

https://pivotal.io/de/cloud-native

Cloud native is a lot more than just signing up with a cloud
provider and using it to run your existing applications.

It affects the design, implementation, deployment, and
operation of your application.

What is Cloud-Native?

● High availability
● Dynamic environments, elastic
● Loosely coupled systems
● Scalable
● Resilient
● Manageable, observable
● Automation, frequently changes

Cloud-Native Keywords

Cloud-Native Application

● Operability: Expose control of application/system lifecycle.

● Observability: Provide meaningful signals for observing state,
health, and performance.

● Elasticity: Grow and shrink to fit in available resources and to meet
fluctuating demand.

● Resilience: Fast automatic recovery from failures.

● Agility: Fast deployment, iteration, and reconfiguration

Our Journey

From Legacy IT to Modern Solutions

Before 2019 Traditional On-Premise Deployment
Colocation Server, Bare metals

2019-2020 Infrastructure as a Service
Virtual Machine, Private Cloud
Container technology, Adopt Cloud Native, Swarm, CI/CD.

2021 Platform & Function as a Service
DevOps as a culture
High Availability with Zonal-Regional public/hybrid cloud.
Serverless, Fargate, Kubernetes
Cost efficiency.

Future Software as a Service

DevOps as a Culture

Breaking down silos between Development & Operations

Source: Accenture

https://www.accenture.com/us-en/blogs/software-engineering-blog/shinde-development-operations-silos

Setup Dynamic Environments

Private Cloud Public Cloud

1. Government Private Data
2. Data Pipeline, Data Lake
3. Core Data & Master Data

Management

1. Public information service
2. High Availability & Scalable Service
3. High-Performance Computing

App Development: Cloud Native Trail Map

1. Containerization
2. CI/CD
3. Orchestration
4. Observability
5. Service Discovery
6. Network & Policy
7. Distributed database &

storage
8. Streaming & messaging
9. Container Registry

10. Software distribution

1. Containerization: 12-Factor App

Guidelines to build app optimized for cloud environment (cloud-native).

Code

1. One Codebase
One codebase tracked in revision
control, many deploys.

2. Dependencies
Explicitly declare and isolate
dependencies

3. Config
Store config in the environment

4. Processes
Execute the app as one or more
stateless processes.

Deploy

5. Backing Services
Treat backing services as attached
resources.

6. Build, Release, Run
Strictly separate build and run
stages.

7. Dev/Prod Parity
Keep development, staging, and
production as similar as possible.

8. Port Binding
Export services via port binding.

Operate

9. Concurrency
Scale out via the process model

10. Disposability
Maximize robustness with fast
startup and graceful shutdown.

11. Logs
Treat logs as event streams.

12. Admin Processes
Run admin tasks as one-off
processes.

Source: https://12factor.net/

https://12factor.net/

2. Continuous Integration & Delivery (CI/CD)

Deliver incremental release frequently, predictably

Continuous Integration Continuous Delivery Continuous Deployment Continuous Monitoring

1. Code review & Pull
Request Approval

2. Automated coding
standard checking
(maintainability)

3. Automated unit &
functional (API)
testing with code
coverage check

4. Automated
end-to-end testing

5. Security testing
6. Load/stress testing

1. Git Branch (Git Flow,
Trunk Based)

2. CI/CD Pipeline script
3. Automatic

versioning
4. Automatic build
5. Automatic release

1. Automatic deploy to
staging/QA

2. Automatic deploy to
production

3. Canary release

1. Centralized logging
2. Infrastructure

logging, uptime,
utilization,
monitoring, & alert

3. Application
performance
monitoring & alert

4. Error logging & alert
5. Synthetic

monitoring
6. Google analytics
7. Release health &

adoption monitor

3. Orchestration

Managing the life cycles of containers, especially in large, dynamic
environments.

Light Workload: Docker Swarm Medium-Heavy Workload: Kubernetes

3. Orchestration

Managing the life cycles of containers, especially in large, dynamic
environments.

Caprover

4. Observability

Monitoring, logging, tracing.

Measure Success

Monitoring User Analytics

Uptime Monitoring

We have OKR, service uptime > 99%

Load Testing with Locust

Swarm Users: 1000
Spawn Rate: 10 users/sec
Duration: 5 menit

Application Performance Monitoring

Metrics:
Apdex score, throughput, transaction rate, error rate, response time, etc.

Application Performance Monitoring

Metrics:
Apdex score, throughput, transaction rate, error rate, response time, etc.

We still learning too

Apps not fully optimized.

● Backend Engineer
● Frontend Engineer
● DevOps Engineer
● Software QA
● Software Architect
● etc.

Send your best portfolio to yoga.hanggara@jds.jabarprov.go.id

Visit https://digitalservice.jabarprov.go.id/karir/

We’re Hiring!

mailto:yoga.hanggara@jds.jabarprov.go.id
https://digitalservice.jabarprov.go.id/karir/

Sponsored by:

Open Networking
Indonesia

Hosted by:

Community Partners:

Thanks!
Do you have any questions?

yohang88@gmail.com
+6285729402579

digitalservice.jabarprov.go.id

